Answer:
Part 1) variance = 49,595.9
Part 2) standard deviation = 222.7
Option C
Step-by-step explanation:
we have
set of data [tex][440,130,280,500,150,640,760][/tex]
step 1
Find the mean
Adds the values and divide by the number of values
In this problem the number of values is 7
[tex][440+130+280+500+150+640+760]/7[/tex]
[tex][2,900]/7=414.3[/tex]
step 2
for each number: subtract the Mean and square the result
[tex](440-414.3)^{2}=660.49\\ (130-414.3)^{2}= 80,826.49\\ (280-414.3)^{2}= 18,036.49\\ (500-414.3)^{2}= 7,344.49\\ (150-414.3)^{2}= 69,854.49\\ (640-414.3)^{2}= 50,940.49\\ (760-414.3)^{2}=119,508.49[/tex]
step 3
work out the mean of those squared differences
[tex][660.49+80,826.49+18,036.49+7,344.49+69,854.49+50,940.49+119,508.49]/7=347,171.43/7=49,595.9[/tex] ----> this value is called the "Variance"
step 4
The standard deviation is the square root of the variance
so
The standard deviation is equal to
[tex]\sqrt{49,595.9}=222.7[/tex]