contestada

Find the variance and standard deviation of the given set of data to the nearest tenth.

{440, 130, 280, 500, 150, 640, 760}


A) variance = 222.7, standard deviation = 49,595.9

B) variance = 49,595.9, standard deviation = 24,798

C) variance = 49,595.9, standard deviation = 222.7

D) variance = 57,861.9, standard deviation = 240.5

Respuesta :

Answer:

Part 1) variance = 49,595.9

Part 2) standard deviation = 222.7

Option C

Step-by-step explanation:

we have

set of data [tex][440,130,280,500,150,640,760][/tex]

step 1  

Find the mean  

Adds the values and divide by the number of values

In this problem the number of values is 7

[tex][440+130+280+500+150+640+760]/7[/tex]

[tex][2,900]/7=414.3[/tex]

step 2  

for each number: subtract the Mean and square the result  

[tex](440-414.3)^{2}=660.49\\ (130-414.3)^{2}= 80,826.49\\ (280-414.3)^{2}= 18,036.49\\ (500-414.3)^{2}= 7,344.49\\ (150-414.3)^{2}= 69,854.49\\ (640-414.3)^{2}= 50,940.49\\ (760-414.3)^{2}=119,508.49[/tex]

step 3  

work out the mean of those squared differences  

[tex][660.49+80,826.49+18,036.49+7,344.49+69,854.49+50,940.49+119,508.49]/7=347,171.43/7=49,595.9[/tex] ----> this value is called the "Variance"  

step 4

The standard deviation is the square root of the variance

so

The standard deviation is equal to

[tex]\sqrt{49,595.9}=222.7[/tex]