Respuesta :
Answer:
[tex]\rm 2_{0}^{1}\text{n} + \, _{94}^{239}\text{Pu} \longrightarrow_{36}^{89}\text{Kr} + \, _{58}^{149}\text{Ce} + \, 3_{0}^{1}\text{n}; three[/tex]
Explanation:
If the fission is induced by two neutrons, the unbalanced equation is
[tex]2\rm _{0}^{1}\text{n} + \, _{94}^{239}\text{Pu} \longrightarrow_{36}^{89}\text{Kr} + \, _{58}^{149}\text{Ce} + \, x_{0}^{1}\text{n}[/tex]
The main point to remember in balancing nuclear equations is that the sums of the superscripts and the subscripts must be the same on each side of the equation .
Balancing the superscripts, we get
2 + 239 = 89 + 149 + x
241 = 238 + x
x = 3
The balanced nuclear equation is
[tex]\rm 2_{0}^{1}\text{n} + \, _{94}^{239}\text{Pu} \longrightarrow_{36}^{89}\text{Kr} + \, _{58}^{149}\text{Ce} + \, \mathbf{3}_{0}^{1}\text{n}[/tex]
[tex]\text{The fission produces } \boxed{\textbf{three}} \text{ neutrons}[/tex]
The number of neutrons produced in the reaction is 3.
Nuclear equation:
[tex]2^1n_0+^{239}Pu---->^{89}Kr_{36}+^{149}Ce_{58}+3^1n_0[/tex]
In balancing nuclear equations- the sums of the superscripts and the subscripts must be the same on each side of the equation.
On Balancing the superscripts, we get:
[tex]2 + 239 = 89 + 149 + x\\\\241 = 238 + x\\\\x = 3[/tex]
The balanced nuclear equation is:
[tex]2^1n_0+^{239}Pu---->^{89}Kr_{36}+^{149}Ce_{58}+3^1n_0[/tex]
Thus, number of neutrons produced in the reaction is 3.
Find more information about Nuclear equation here:
brainly.com/question/6199911