Respuesta :
Answer:
[tex]\boxed{\text{C$_{15}$H$_{21}$FeO$_{6}$}}[/tex]
Explanation:
Let's call the unknown compound X.
1. Calculate the mass of each element in 1.23383 g of X.
(a) Mass of C
[tex]\text{Mass of C} = \text{2.3162 g } \text{CO}_{2}\times \dfrac{\text{12.01 g C}}{\text{44.01 g }\text{CO}_{2}}= \text{0.632 07 g C}[/tex]
(b) Mass of H
[tex]\text{Mass of H} = \text{0.66285 g }\text{H$_{2}$O}\times \dfrac{\text{2.016 g H}}{\text{18.02 g } \text{{H$_{2}$O}}} = \text{0.074 157 g H}[/tex]
(c)Mass of Fe
(i)In 0.4131g of X
[tex]\text{Mass of Fe} = \text{0.093 33 g Fe$_{2}$O$_{3}$}\times \dfrac{\text{111.69 g Fe}}{\text{159.69 g g Fe$_{2}$O$_{3}$}} = \text{0.065 277 g Fe}[/tex]
(ii) In 1.2383 g of X
[tex]\text{Mass of Fe} = \text{0.065277 g Fe}\times \dfrac{1.2383}{0.4131} = \text{0.195 67 g Fe}[/tex]
(d)Mass of O
Mass of O = 1.2383 - 0.632 07 - 0.074 157 - 0.195 67 = 0.336 40 g
2. Calculate the moles of each element
[tex]\text{Moles of C = 0.63207 g C}\times\dfrac{\text{1 mol C}}{\text{12.01 g C }} = \text{0.052 629 mol C}\\\\\text{Moles of H = 0.074157 g H} \times \dfrac{\text{1 mol H}}{\text{1.008 g H}} = \text{0.073 568 mol H}\\\\\text{Moles of Fe = 0.195 67 g Fe} \times \dfrac{\text{1 mol Fe}}{\text{55.845 g Fe}} = \text{0.003 5038 mol Fe}\\\\\text{Moles of O = 0.336 40} \times \dfrac{\text{1 mol O}}{\text{16.00 g O}} = \text{0.021 025 mol O}[/tex]
3. Calculate the molar ratios
Divide all moles by the smallest number of moles.
[tex]\text{C: } \dfrac{0.052629}{0.003 5038}= 15.021\\\\\text{H: } \dfrac{0.073568}{0.003 5038} = 20.997\\\\\text{Fe: } \dfrac{0.003 5038}{0.003 5038} = 1\\\\\text{O: } \dfrac{0.021025}{0.003 5038} = 6.0006[/tex]
4. Round the ratios to the nearest integer
C:H:O:Fe = 15:21:1:6
5. Write the empirical formula
[tex]\text{The empirical formula is } \boxed{\textbf{C$_{15}$H$_{21}$FeO$_{6}$}}[/tex]