Respuesta :
Answer:
Step-by-step explanation:
Given that two fair dice, one blue and one red, are tossed, and the up face on each die is recorded.
a) P(E) = P(the difference of the numbers is 3 or more}
Favourable events are (1,4) (1,5)(1,6) (2,5) (2,6) (3,6) (4,1) (5,1) (5,2) (6,1) (6,2)(6,3)
P(E) = [tex]\frac{12}{36} =\frac{1}{3}[/tex]
b)P(F)
Favourable events for F = (1,1) (2,2)...(6,6)
P(F) = [tex]\frac{6}{36} =\frac{1}{6}[/tex]
c) P(EF)
There is no common element between E and F
P(EF) =0
Answer:
(a) [tex]\frac{1}{3}[/tex]
(b) [tex]\frac{1}{6}[/tex]
(c) 0
Step-by-step explanation:
After tossing two dice, the possible events may be as per following table.
Die - 1
1 2 3 4 5 6
Die 2
1 1,1 1,2 1,3 1,4 1,5 1,6
2 2,1 2,2 2.3 2,4 2,5 2,6
3 3,1 3,2 3,3 3,4 3,5 3,6
4 4,1 4,2 4,3 4,4 4,5 4,6
5 5,1 5,2 5,3 5,4 5,5 5,6
6 6,1 6,2 6,3 6,4 6,5 6,6
E : (1,4), (1,5), (1,6), (2,5), (2,6), (3,6), (4,1), (5,1) (5,2), (6,1), (6,2), (6,3)
(a) P(E) = [tex]\frac{\text{favorable events}}{\text{total events}}[/tex]
= [tex]\frac{12}{36}[/tex]
= [tex]\frac{1}{3}[/tex]
F : (1,1), (2,2), (3,3), (4,4), (5,5), (6,6)
(b) P(F) = [tex]\frac{6}{36}[/tex]
= [tex]\frac{1}{6}[/tex]
(c) P(EF) = 0
Even a single event is not common in E and F. Therefore, P(EF) would be 0.