The Lagrangian is
[tex]L(x,y,z,t,\lambda)=x+y+z+t+\lambda(x^2+y^2+z^2+t^2-1)[/tex]
with critical points wherever
[tex]L_x=1+2\lambda x=0[/tex]
[tex]L_y=1+2\lambda y=0[/tex]
[tex]L_z=1+2\lambda z=0[/tex]
[tex]L_t=1+2\lambda t=0[/tex]
[tex]L_\lambda=x^2+y^2+z^2+t^2-1=0[/tex]
The first four equations tell us
[tex]x=y=z=t=-\dfrac1{2\lambda}[/tex]
and substituting these into the last equation gives
[tex]4\left(-\dfrac1{2\lambda}\right)^2=\dfrac1{\lambda^2}=1\implies\lambda=\pm1[/tex]
If [tex]\lambda=1[/tex], then [tex]x=y=z=t=-\dfrac12[/tex]; if [tex]\lambda=-\dfrac12[/tex], then [tex]x=y=z=t=\dfrac12[/tex]. We then find a minimum value of
[tex]f\left(-\dfrac12,-\dfrac12,-\dfrac12,-\dfrac12\right)=-2[/tex]
and a maximum value of
[tex]f\left(\dfrac12,\dfrac12,\dfrac12,\dfrac12\right)=2[/tex]