This extreme value problem has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint. f(x, y, z, t) = x + y + z + t; x2 + y2 + z2 + t2 = 1

Respuesta :

The Lagrangian is

[tex]L(x,y,z,t,\lambda)=x+y+z+t+\lambda(x^2+y^2+z^2+t^2-1)[/tex]

with critical points wherever

[tex]L_x=1+2\lambda x=0[/tex]

[tex]L_y=1+2\lambda y=0[/tex]

[tex]L_z=1+2\lambda z=0[/tex]

[tex]L_t=1+2\lambda t=0[/tex]

[tex]L_\lambda=x^2+y^2+z^2+t^2-1=0[/tex]

The first four equations tell us

[tex]x=y=z=t=-\dfrac1{2\lambda}[/tex]

and substituting these into the last equation gives

[tex]4\left(-\dfrac1{2\lambda}\right)^2=\dfrac1{\lambda^2}=1\implies\lambda=\pm1[/tex]

If [tex]\lambda=1[/tex], then [tex]x=y=z=t=-\dfrac12[/tex]; if [tex]\lambda=-\dfrac12[/tex], then [tex]x=y=z=t=\dfrac12[/tex]. We then find a minimum value of

[tex]f\left(-\dfrac12,-\dfrac12,-\dfrac12,-\dfrac12\right)=-2[/tex]

and a maximum value of

[tex]f\left(\dfrac12,\dfrac12,\dfrac12,\dfrac12\right)=2[/tex]

ACCESS MORE