In △ABC, m∠A=39 △ A B C , m ∠ A = 39 °, a=11 a = 11 , and b=13 b = 13 . Find c c to the nearest tenth.

Respuesta :

Answer:

[tex]c=17.5\ units[/tex]

Step-by-step explanation:

step 1

Find the measure of angle B

Applying the law of sines

[tex]\frac{a}{sin(A)}=\frac{b}{sin(B)}[/tex]

substitute the given values

[tex]\frac{11}{sin(39\°)}=\frac{13}{sin(B)}[/tex]

[tex]sin(B)={sin(39\°)}\frac{13}{11}[/tex]

[tex]B=arcsin[sin(39\°)\frac{13}{11}][/tex]

[tex]B=48.1\°[/tex]

step 2

Find the measure of angle C

Remember that the sum of the interior angles of a triangle must be equal to 180 degrees

so

[tex]A+B+C=180\°[/tex]

substitute the given values

[tex]39\°+48.1\°+C=180\°[/tex]

[tex]87.1\°+C=180\°[/tex]

[tex]C=180\°-87.1\°=92.9\°[/tex]

step 3

Find the length side of c

Applying the law of sines

[tex]\frac{a}{sin(A)}=\frac{c}{sin(C)}[/tex]

substitute the given values

[tex]\frac{11}{sin(39\°)}=\frac{c}{sin(92.9\°)}[/tex]

[tex]c=\frac{11}{sin(39\°)}sin(92.9\°)[/tex]

[tex]c=17.5\ units[/tex]