Answer:
[tex]c=17.5\ units[/tex]
Step-by-step explanation:
step 1
Find the measure of angle B
Applying the law of sines
[tex]\frac{a}{sin(A)}=\frac{b}{sin(B)}[/tex]
substitute the given values
[tex]\frac{11}{sin(39\°)}=\frac{13}{sin(B)}[/tex]
[tex]sin(B)={sin(39\°)}\frac{13}{11}[/tex]
[tex]B=arcsin[sin(39\°)\frac{13}{11}][/tex]
[tex]B=48.1\°[/tex]
step 2
Find the measure of angle C
Remember that the sum of the interior angles of a triangle must be equal to 180 degrees
so
[tex]A+B+C=180\°[/tex]
substitute the given values
[tex]39\°+48.1\°+C=180\°[/tex]
[tex]87.1\°+C=180\°[/tex]
[tex]C=180\°-87.1\°=92.9\°[/tex]
step 3
Find the length side of c
Applying the law of sines
[tex]\frac{a}{sin(A)}=\frac{c}{sin(C)}[/tex]
substitute the given values
[tex]\frac{11}{sin(39\°)}=\frac{c}{sin(92.9\°)}[/tex]
[tex]c=\frac{11}{sin(39\°)}sin(92.9\°)[/tex]
[tex]c=17.5\ units[/tex]