Answer: 0.3461
Step-by-step explanation:
Given : The strength of an aluminum alloy is normally distributed .
Mean : [tex]\mu=10\text{ GPa}[/tex]
Standard deviation : [tex]\sigma=1.4\text{ GPa}[/tex]
Sample size : n=5
Let x be the random variable that represents the strength of aluminum alloy .
z-score : [tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x= 11 GPa
[tex]z=\dfrac{11-10}{1.4}\approx0.71[/tex]
Using the standard normal distribution table , we have
The probability that a aluminum alloy has greater strength than 11GPa:
= [tex]P(x>11)=P(z>0.71)=1-P(\leq0.71)=1-0.7611479=0.2388521\approx0.24[/tex]
Now by using the binomial distribution, the probability that two or more of them have a greater strength than 11GPa :-
[tex]P(X\geq2)=1-P(x<2)=1-(P(0)+P(1))\\\\=1-(^5C_0(0.24)^0(1-0.24)^5+^5C_1(0.24)^1(1-0.24)^4)\\\\=1-((0.76)^5+5(0.24)(0.76)^4)=0.3461013504\approx0.3461[/tex]
Hence, the required probability = 0.3461