Respuesta :
Answer:
The force exerted by the biceps muscle is 1485.58 N.
Explanation:
Given that,
Length = 0.445 m
Mass of forearm = 2.15 cm
Mass of the object = 6.15
Distance = 2.15 cm
We need to calculate the force exerted by the biceps muscle
Under the equilibrium condition
Moment about E = 0
Using free body diagram of muscle
[tex]F_{b}\times d_{f}-mg\times\dfrac{l}{2}-mg\times l=0[/tex]
Where, [tex]F_{b}[/tex] = force by biceps
put the value into the formula
[tex]F_{b}\times0.0215-mg\times\dfrac{0.445}{2}-mg\times0.445=0[/tex]
[tex]F_{b}\times0.0215=2.35\times9.8\times0.2225+6.15\times9.8\times0.445[/tex]
[tex]F_{b}\times 0.0215=31.94[/tex]
[tex]F_{b}=\dfrac{31.94}{0.0215}[/tex]
[tex]F_{b}=1485.58\ N[/tex]
Hence, The force exerted by the biceps muscle is 1485.58 N.
![Ver imagen CarliReifsteck](https://us-static.z-dn.net/files/dc2/0a1c47210aa3e2969bec2e9380eacb7f.png)
Answer:
151.6 kg-weight
Explanation:
Torque = force x perpendicular distance of direction of force
We shall take torque of forces about the elbow joint. If T be tension in the forearm muscle , Torque about elbow is
[tex]T\times .0215[/tex]
Torque of weight of bone about elbow
[tex]=2.35\times \frac{0.445}{2}[/tex]
=.5228 Nm
Torque of weight held about the elbow
[tex]=6.15\times 0.445\\=2.7367[/tex]
For rotational equilibrium
[tex]T\times .0215[/tex] =.5228 Nm+2.7367
T = 151.60 Kg-wt
=