Answer: ($141,775, $158,225)
Step-by-step explanation:
Given : Significance level : [tex]\alpha: 1-0.9=0.1[/tex]
Critical value : [tex]z_{\alpha/2}=1.645[/tex]
Sample size : n= 49
Sample mean : [tex]\overline{x}=150,000[/tex]
Standard deviation : [tex]\sigma=35,000[/tex]
The confidence interval for population mean is given by :_
[tex]\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]
[tex]= 150,000\pm (1.645)\dfrac{35000}{\sqrt{49}}\\\\\approx150,000\pm8225\\\\=(150,000-8225,150,000+8225)=(141,775,158,225)[/tex]
Hence,he 90% confidence interval for the average salary of a CFA charter-holder = ($141,775, $158,225)