Answer: a) 80 b) 32
Step-by-step explanation:
a) Given : Significance level : [tex]\alpha=1-0.95=0.05[/tex]
Critical value : [tex]z_{\alpha/2}=1.96[/tex]
Standard deviation : s =6.84
Margin of error : E= 1.5
The formula to find the sample size is given by :-
[tex]n=(\dfrac{z_{\alpha/2}\ \sigma}{E})^2[/tex]
i.e. [tex]n=(\dfrac{(1.96)(6.84)}{1.5})^2=79.88069376\approx80[/tex]
Hence, the required minimum sample size = 80
b) Given : Significance level : [tex]\alpha=1-0.90=0.10[/tex]
Critical value : [tex]z_{\alpha/2}=1.645[/tex]
Standard deviation : s =6.84
Margin of error : E= 2
The formula to find the sample size is given by :-
[tex]n=(\dfrac{z_{\alpha/2}\ \sigma}{E})^2[/tex]
i.e. [tex]n=(\dfrac{(1.645)(6.84)}{2})^2=31.65075081\32[/tex]
Hence, the required minimum sample size =32