Respuesta :

Answer:

-⅓ cos³ x + C

Explanation:

∫ cos² x sin x dx

If u = cos x, then du = -sin dx.

∫ -u² du

Integrate using power rule:

-⅓ u³ + C

Substitute back:

-⅓ cos³ x + C

Answer:

Let, cos(x) = t => -sin(x)dx = dt => sin(x)dx = -dt

[tex] →\int { \cos}^{2}( x ).\ sin(x)dx \\ =- \int {t}^{2} dt = -\frac{ {t}^{3} }{3} + C = \boxed{ -\frac{1}{3} \cos^{3} (x) + C}✓[/tex]

  • -1/3cos³(x)+C is the right answer.