Explanation:
It is given that,
Inductance, [tex]L=40\ mH=40\times 10^{-3}\ H[/tex]
RMS value of voltage, [tex]v_{rms}=120\ V[/tex]
Frequency, f = 60 Hz
We need to find the energy stored at t = (1 /185) s. It is assumed that energy stored in the inductor is zero at t = 0. So,
The current flowing through the inductor is given by :
[tex]I_t=\dfrac{V_o}{X_L}\ (sin\ \omega t-\dfrac{\pi}{2})[/tex]
[tex]I_t=\dfrac{\sqrt{2} V_{rms}}{X_L}\ (sin\ \omega t-\dfrac{\pi}{2})[/tex]
[tex]I_t=\dfrac{120\sqrt{2}}{2\pi f L}\ sin(2\pi f t-\dfrac{\pi}{2})[/tex]
[tex]I_t=\dfrac{120\sqrt{2}}{2\pi\times 60\times 40\times 10^{-3}}\ sin(2\pi \times 60\times \dfrac{1}{185})-\dfrac{\pi}{2})[/tex]
[tex]I_t=\dfrac{120\sqrt2}{15.07}\ sin(2\pi \times 60\times \dfrac{1}{185}-\dfrac{\pi}{2})[/tex]
I = 0.091 A
Energy stored in the inductor is, [tex]U=\dfrac{1}{2}LI^2[/tex]
[tex]U=\dfrac{1}{2}\times 40\times 10^{-3}\times (0.091)^2[/tex]
U = 0.000165 Joules
Hence, this is the required solution.