A 0.30-kg flying pig toy is attached to the ceiling with a string. When the pig’s wings flap, it moves at a constant speed of � = 2.00 m/s in a horizontal circle of radius � = 0.25 m. Find the angle � the string makes with the vertical.

Respuesta :

Answer:

58.5 deg

Explanation:

[tex]v[/tex] = mass of the pig toy = 0.30 kg

[tex]v[/tex] = speed of the toy = 2 m/s

[tex]r[/tex] = radius of the circle = 0.25 m

[tex]\theta[/tex] = Angle of the string with the vertical = ?

[tex]T[/tex] = Tension force in the string

Using equilibrium of force in vertical direction

[tex]T Cos\theta = mg[/tex]                                     eq-1

Along the horizontal direction, the component of tension force provides the necessary centripetal force, hence

[tex]T Sin\theta = \frac{mv^{2}}{r}[/tex]                                  eq-2

Dividing eq-2 by eq-1

[tex]\frac{T Sin\theta}{T Cos\theta} = \frac{\frac{mv^{2}}{r}}{mg}[/tex]

[tex]tan\theta= \frac{v^{2}}{rg}[/tex]

[tex]tan\theta= \frac{(2)^{2}}{(0.25)(9.8)}[/tex]

[tex]tan\theta = 1.63[/tex]

[tex]\theta[/tex] = 58.5 deg

Ver imagen JemdetNasr
ACCESS MORE
EDU ACCESS
Universidad de Mexico