Answer: (a) [tex]\Delta G^0=-432.25kJ[/tex] , (b) [tex]\Delta G^0=55.96kJ[/tex] and (c) [tex]\Delta G^0=-171.74kJ[/tex]
Explanation: (a) Oxidation half reaction for the given equation is:
[tex]Mg(s)\rightarrow Mg^2^+(aq)+2e^-E^0=2.37V[/tex]
The reduction half equation is:
[tex]Pb^2^+(aq)+2e^-\rightarrow Pb(s)E^0=-0.13V[/tex]
[tex]E^0_c_e_l_l=E^0_r_e_d_u_c_t_i_o_n+E^0_o_x_i_d_a_t_i_o_n[/tex]
[tex]E^0_c_e_l_l=-0.13V+2.37V[/tex]
[tex]E^0_c_e_l_l=2.24V[/tex]
[tex]\Delta G^0=-nFE^0_c_e_l_l[/tex]
where n is the number of moles of electrons transferred and F is faraday constant.
2 moles of electrons are transferred in the cell reaction which is also clear from both the half equations.
[tex]\Delta G^0=-2mol*96485\frac{C}{mol}*2.44V[/tex]
[tex]\Delta G^0=-432252.8J[/tex]
or [tex]\Delta G^0=-432.25kJ[/tex]
(b) Oxidation half reaction for the given equation is:
[tex]2Cl^-(aq)\rightarrow Cl_2(g)+2e^-E^0=-1.36V[/tex]
Reduction half equation is:
[tex]Br_2(l)+2e^-\rightarrow 2Br^-E^0=1.07V[/tex]
[tex]E^0_c_e_l_l=1.07V+(-1.36V)[/tex]
[tex]E^0_c_e_l_l=1.07V-1.36V[/tex]
[tex]E^0_c_e_l_l=-0.29V[/tex]
Now, we can calculate the [tex]\Delta G^0[/tex] same as we did for part a.
[tex]\Delta G^0=-2mol*96485\frac{C}{mol}*(-0.29V)[/tex]
[tex]\Delta G^0=55961.3J[/tex]
or [tex]\Delta G^0=55.96kJ[/tex]
(c) Oxidation half reaction for the given equation is:
[tex]Cu(s)\rightarrow Cu^2^+(aq)+2e^-E^0=-0.34V[/tex]
reduction half equation is:
[tex]MnO_2(s)+4H^+(aq)+2e^-\rightarrow Mn^2^+(aq)+2H_2O(l)E^0=1.23V[/tex]
[tex]E^0_c_e_l_l=1.23V+(-0.34V)[/tex]
[tex]E^0_c_e_l_l=0.89V[/tex]
[tex]\Delta G^0=-2mol*96485\frac{C}{mol}*0.89V[/tex]
[tex]\Delta G^0=-171743.3J[/tex]
or [tex]\Delta G^0=-171.74kJ[/tex]