Respuesta :
Answer:E=[tex]\frac{\pi R\left ( \Delta V\right )^2\sqrt{LC}}{\left ( R^2+\frac{9}{4}\left (\frac{L}{C} \right )\right )}[/tex]
Explanation:
We know resonant frequency is given by
[tex]\omega_0=\frac{1}{\sqrt{LC}}[/tex]
and the operating frequency is given by
[tex]\omega =2\omega_0=\frac{2}{\sqrt{LC}}[/tex]
The capacitance reactance is given by
[tex]X_c=\frac{1}{\omega C}=\frac{\sqrt{LC}}{2C}=\frac{1}{2}\sqrt{\frac{L}{C}}[/tex]
inductive reactance is given by
[tex]X_L=\omega L=\left ( \frac{2}{\sqrt{LC}}\right )L=2\sqrt{\frac{L}{C}}[/tex]
Thus impedance is
[tex]Z=\left ( R^2+\left (X_L-X_C \right )^2 \right )^\frac{1}{2}[/tex]
[tex]Z=\left ( R^2+\left (2\sqrt{\frac{L}{C}}-\frac{1}{2}\sqrt{\frac{L}{C}} \right )^2 \right )^\frac{1}{2}[/tex]
[tex]Z=\left ( R^2+\frac{9}{4}\left ( \frac{L}{C} \right ) \right )^\frac{1}{2}[/tex]
The average power delivered is
[tex]P_{avg.}=\frac{\Delta V^2}{Z}cos\phi =\frac{\left ( \Delta V\right )^2}{Z}\left (\frac{R}{Z} \right )[/tex]
[tex]P_{avg.}=\frac{\left (\Delta V \right )^2R}{\left ( R^2+\frac{9}{4}\left (\frac{L}{C} \right )\right )}[/tex]
Energy Delivered in one cycle is given by
[tex]E=P_{avg}T[/tex]
[tex]E=\frac{\left (\Delta V \right )^2R}{\left ( R^2+\frac{9}{4}\left (\frac{L}{C} \right )\right )}\left ( \frac{2\pi }{\frac{2}{\sqrt{LC}}}\right )[/tex]
E=[tex]\frac{\pi R\left ( \Delta V\right )^2\sqrt{LC}}{\left ( R^2+\frac{9}{4}\left (\frac{L}{C} \right )\right )}[/tex]