The real-valued general solution to the system is:
[tex]x=\left[\begin{array}{ccc}x_1\\x_2\\x_3\\x_4\end{array}\right]=\left[\begin{array}{ccc}b_1e^{-t}\\b_2e^{-2t}\\b_3e^{4t}\\b_4e^{3t}\end{array}\right][/tex]
We are given a system as:
[tex]x'=(-1\ \ -2\ \ 4\ \ 3)x[/tex]
i.e.
we have:
[tex]\left[\begin{array}{ccc}x_1'\\x_2'\\x_3'\\x_4'\end{array}\right]=[-1\ \ -2\ \ 4\ \ 3]\left[\begin{array}{ccc}x_1\\x_2\\x_3\\x_4\end{array}\right][/tex]
i.e.
[tex]\left[\begin{array}{ccc}x_1'\\x_2'\\x_3'\\x_4'\end{array}\right]=\left[\begin{array}{ccc}-x_1\\-2x_2\\4x_3\\3x_4\end{array}\right][/tex]
Let the variables x_i's be differentiated with respect to t.
i.e. we have:
[tex]x_1'=-x_1\\\\i.e.\\\\\dfrac{x_1'}{x_1}=-1[/tex]
on integrating both side of the equation we have:
[tex]\log x_1=-t+c_1\\\\i.e.\\\\x_1=e^{-t+c_1}\\\\i.e.\\\\x_1=e^{-t}e^{c_1}\\\\i.e.\\\\x_1=b_1e^{-t}[/tex]
Similarly,
[tex]x_2'=-2x_2\\\\i.e.\\\\\dfrac{x_2'}{x_2}=-2\\\\\\\text{on\ integrating\ both\ side}\\\\\log x_2=-2t+c_2\\\\i.e.\\\\x_2=b_2e^{-2t}[/tex]
Similarly we get:
[tex]x_3=b_3e^{4t}[/tex]
and
[tex]x_4=b_4e^{3t}[/tex]