Respuesta :
Answer:
[tex]T^{-1}(x_1,x_2)=(\frac{x_1+x_2}{2},\frac{x_2-x_1}{2})[/tex]
Step-by-step explanation:
Given:
Linear transformation,
[tex]T:R^2\rightarrow R^2[/tex] defined as
[tex]T(x_1,x_2)=(x_1-x_2,x_1+x_2)[/tex]
To Show: T is invertible
To find: [tex]T^{-1}[/tex]
We know that Standard Basis of R² is [tex]\{e_1=(1,0)\:,\:e_2=(0,1)\}[/tex]
[tex]T(e_1)=T(1,0)=(1,1)=1e_1+1e_2[/tex]
[tex]T(e_2)=T(0,1)=(-1,1)=-1e_1+1e_2[/tex]
So, The matrix representation of T is [tex]\begin{bmatrix}1&1\\-1&1\end{bmatrix}^T=\begin{bmatrix}1&-1\\1&1\end{bmatrix}[/tex]
Now, Determinant of T = 1 - (-1) = 1 + 1 = 2 ≠ 0
⇒ Matrix Representation of T is Invertible matrix.
⇒ T is invertible Linear Transformation.
Hence Proved.
let,
[tex]x_1-x_2=u.........................(1)[/tex]
[tex]x_1+x_2=v.........................(2)[/tex]
Add (1) and (2),
[tex]2x_1=u+v[/tex]
[tex]x_1=\frac{u+v}{2}[/tex]
Putting this value in (1),
[tex]\frac{u+v}{2}-x_2=u[/tex]
[tex]x_2=\frac{u+v}{2}-u[/tex]
[tex]x_2=\frac{u+v-2u}{2}[/tex]
[tex]x_2=\frac{v-u}{2}[/tex]
Now,
[tex]T(x_1,x_2)=(x_1-x_2,x_1+x_2)=(u,v)[/tex]
[tex]\implies(x_1,x_2)=T^{-1}(u,v)[/tex]
[tex]\implies T^{-1}(u,v)=(\frac{u+v}{2},\frac{v-u}{2})[/tex]
[tex]\implies T^{-1}(x_1,x_2)=(\frac{x_1+x_2}{2},\frac{x_2-x_1}{2})[/tex]
Therefore, [tex]T^{-1}(x_1,x_2)=(\frac{x_1+x_2}{2},\frac{x_2-x_1}{2})[/tex]
Answer with explanation:
T is a Linear transformation such that
[tex]T:R^2\rightarrow R^2\\\\T(x_{1},x_{2})=(x_{1}-12,21+x_{2})[/tex]
To show that ,T is invertible that is inverse of a matrix exist ,we need to show that ,T is non singular.
⇒ |T|≠0
→→For a Homogeneous system
[tex](x_{1}-12,21+x_{2})=(0,0)\\\\x_{1}=12,x_{2}=-21\\\\|\text{Matrix}|=\left[\begin{array}{cc}12&0\\0&-21\end{array}\right]\\\\ |\text{Matrix}|\neq 0[/tex]
so it is invertible.We have considered equation is of the form
[tex]\rightarrow ax_{1}+bx_{2}+c=0[/tex]
→→For a Non Homogeneous system
[tex](x_{1}-12,21+x_{2})=(s,v)\\\\x_{1}=12+s,x_{2}=-21+v\\\\|\text{Matrix}|=\left[\begin{array}{cc}12+s&0\\0&v-21\end{array}\right]\\\\ |\text{Matrix}|=(s+12)\times (v-21)\neq 0[/tex]
so T, is invertible.
[tex]T^{-1}=\frac{Adj.T}{|T|}\\\\T=\left[\begin{array}{cc}s+12&0\\0&v-21\end{array}\right]\\\\Adj.T=\left[\begin{array}{cc}v-21&0\\0&s+12\end{array}\right]\\\\T^{-1}=\frac{\left[\begin{array}{cc}v-21&0\\0&s+12\end{array}\right]}{(s+12)\times (v-21)}\\\\T^{-1}={\left[\begin{array}{cc}\frac{1}{s+12}&0\\0&\frac{1}{v-21}\end{array}\right]}\\\\\text{Replacing s by} x_{1}\\\\ \text{and v by} x_{2}, \text{we get}\\\\T^{-1}={\left[\begin{array}{cc}\frac{1}{x_{1}+12}&0\\0&\frac{1}{x_{2}-21}\end{array}\right]}[/tex]