Answer:
[tex]\frac{dh}{dt} = 0.562[/tex]
Explanation:
given data:
rate of filling = 15 ft3/min
determine dh\dt when height is water is 5 inch
as from the similar triangle
[tex]\frac{4}{1} = \frac{b}{h}[/tex]
b =4 h
we know that
volume = (area of base of trough){height of trough)
[tex]= \frac{1}{2}* (base of triangle of water* height of triangle of water)(16)[/tex]
[tex]= \frac{1}{2}*4h*h*16[/tex]
[tex]= 32h^{2}[/tex]
Differentiate w.r.t to t
[tex]v(t) =32h^{2}[/tex]
[tex]\frac{d}{dt} v(t) = \frac{d}{dt} 32h^{2}[/tex]
[tex]\frac{dv}{dt} = 64h\frac{dh}{dt}[/tex]
we know h = 5 inch = 0.4166 ft
[tex]\frac{dv}{dt} = 15[/tex]
[tex]15 = 64*0.4166\frac{dh}{dt}[/tex]
[tex]\frac{dh}{dt} = 0.562[/tex]