Answer : The mean free path is, 33.88 m
Explanation :
First we have to calculate the volume of for mole of gas by using ideal gas equation.
[tex]PV=nRT[/tex]
where,
P = pressure of gas = [tex]1.06\times 10^{-8}Pa[/tex]
V = volume of gas = ?
T = temperature of gas = 42.6 K
n = number of moles of gas = 1 mole
R = gas constant = [tex]8.314Pa.m^3/mole.K[/tex]
Now put all the given values in the ideal gas equation, we get:
[tex](1.06\times 10^{-8}Pa)\times (V)=1mole\times (8.314Pa.m^3/mole.K)\times (42.6K)[/tex]
[tex]V=3.34\times 10^{10}m^3[/tex]
Now we have to calculate the number of molecules per unit volume.
[tex]\frac{N}{V}=\frac{n\times N_A}{V}=\frac{(1mole)\times (6.022\times 10^{23})}{3.34\times 10^{10}m^3}=1.803\times 10^{13}molecule/m^3[/tex]
Now we have to calculate the mean free path.
Formula used :
[tex]\text{Mean free path}=\frac{1}{\sqrt{2}\pi d^2(\frac{N}{V})}[/tex]
where,
d = diameter pf molecule = [tex]19.2nm=19.2\times 10^{-9}m[/tex]
conversion used : [tex]1nm=10^{-9}m[/tex]
[tex]\frac{N}{V}[/tex] = number of molecules per unit volume
Now put all the given values in this formula, we get:
[tex]\text{Mean free path}=\frac{1}{\sqrt{2}\times (3.14) (19.2\times 10^{-9})^2\times (1.803\times 10^{13})}[/tex]
[tex]\text{Mean free path}=33.88m[/tex]
Therefore, the mean free path is, 33.88 m