Respuesta :
Answer:
a) [tex]T_{2}=837.2K[/tex]
b) [tex]e=91.3[/tex] %
Explanation:
A) First, let's write the energy balance:
[tex]W=m*(h_{2}-h_{1})\\W=m*Cp*(T_{2}-T_{1})[/tex] (The enthalpy of an ideal gas is just function of the temperature, not the pressure).
The Cp of air is: 1.004 [tex]\frac{kJ}{kgK}[/tex] And its specific R constant is 0.287 [tex]\frac{kJ}{kgK}[/tex].
The only unknown from the energy balance is [tex]T_{2}[/tex], so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.
[tex]T_{2}=T_{1}+\frac{W}{mCp}=1040K-\frac{1120kW}{5.5\frac{kg}{s}*1.004\frac{kJ}{kgk}} \\T_{2}=837.2K[/tex]
B) The isentropic efficiency (e) is defined as:
[tex]e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}[/tex]
Where [tex]{h_{2s}[/tex] is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because [tex]h_{2}-h_{1}[/tex] can be obtained from the energy balance [tex]\frac{W}{m}=h_{2}-h_{1}[/tex]
[tex]h_{2}-h_{1}=\frac{-1120kW}{5.5\frac{kg}{s}}=-203.64\frac{kJ}{kg}[/tex]
An entropy change for an ideal gas with constant Cp is given by:
[tex]s_{2}-s_{1}=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})[/tex]
You can review its deduction on van Wylen 6 Edition, section 8.10.
For the isentropic process the equation is:
[tex]0=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})\\Rln(\frac{P_{2}}{P_{1}})=Cpln(\frac{T_{2}}{T_{1}})[/tex]
Applying logarithm properties:
[tex]ln((\frac{P_{2}}{P_{1}})^{R} )=ln((\frac{T_{2}}{T_{1}})^{Cp} )\\(\frac{P_{2}}{P_{1}})^{R}=(\frac{T_{2}}{T_{1}})^{Cp}\\(\frac{P_{2}}{P_{1}})^{R/Cp}=(\frac{T_{2}}{T_{1}})\\T_{2}=T_{1}(\frac{P_{2}}{P_{1}})^{R/Cp}[/tex]
Then,
[tex]T_{2}=1040K(\frac{120kPa}{278kPa})^{0.287/1.004}=817.96K[/tex]
So, now it is possible to calculate [tex]h_{2s}-h_{1}[/tex]:
[tex]h_{2s}-h_{1}}=Cp(T_{2s}-T_{1}})=1.004\frac{kJ}{kgK}*(817.96K-1040K)=-222.92\frac{kJ}{kg}[/tex]
Finally, the efficiency can be calculated:
[tex]e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}=\frac{-203.64\frac{kJ}{kg}}{-222.92\frac{kJ}{kg}}\\e=0.913=91.3[/tex] %