Answer:
[tex]\vec{s(t)}=\frac{1}{2}t^2\hat{i}-(2t+1)\hat{j}+(\frac{1}{3}t^3+1)\hat{k}[/tex]
Step-by-step explanation:
We are given that velocity vector of a particle
[tex]\vec{v(t)}=t\hat{i}-2\hat{j}+t^2\hat{k}[/tex]
When t=0 then the particle is at the point (0,-1,1).
We have to find the position of particle at time t.
We know that
Velocity =[tex]\frac{Displacement }{time}=\frac{ds}{dt}[/tex]
Therefore,[tex]\vec{v}=\frac{\vec{ds}}{dt}[/tex]
[tex]\int{ds}=\int (t\hat{i}-2\hat{j}+t^2\hat{k})dt[/tex]
Integrate on both sides then we get
[tex]\vec{s(t)}=\frac{1}{2}t^2\hat{i}-2t\hat{j}+\frac{1}{3}t^3\hat{k}+C[/tex]
[tex]\int x^n dx=\frac{x^{n+1}}{n+1}+C[/tex]
Substitute the value of point at time t=0 then we get
C=[tex]-\hat{j}+\hat{k}[/tex]
Substitute the value of C then we get
[tex]\vec{s(t)}=\frac{1}{2}t^2\hat{i}-2t\hat{j}+\frac{1}{3}t^3\hat{k}-\hat{j}+\hat{k}[/tex]
Therefore, the position of particle at time t
[tex]\vec{s(t)}=\frac{1}{2}t^2\hat{i}-(2t+1)\hat{j}+(\frac{1}{3}t^3+1)\hat{k}[/tex]