Answer:
The probability that the electron will tunnel the barrier is 0.25%.
Explanation:
Given that,
Initial energy = 9 eV
Potential energy = 12 eV
Width = 0.4 nm
Using formula of transmission coefficient
[tex]T\approx e^{-2kL}[/tex]
[tex]T=Ge^{-2kl}[/tex].....(I)
We need to calculate the value of k
[tex]k=\sqrt{\dfrac{2m}{(\dfrac{h}{2\pi})^2}(v_{0}-E)}[/tex]
Where, m = mass of electron
E = initial energy
v=potential energy
Put the value into the formula
[tex]k=\sqrt{\dfrac{2\times9.1\times10^{-31}}{(1.055\times10^{-34})^2}\times(12-9)\times1.6\times10^{-19}}[/tex]
[tex]k=8.86\times10^{9}[/tex]
We need to calculate the probability that the electron will tunnel the barrier
Using the formula of tunnel barrier
[tex]T=\dfrac{16E(v_{0}-E)}{v_{0}^2}e^{-2kl}[/tex]
Where, [tex]G = \dfrac{16E(v_{0}-E)}{v_{0}^2}[/tex]
Put the value into the formula
[tex]T=\dfrac{16\times9\times(12-9)}{12^2}e^{-2\times8.86\times10^{9}\times0.4\times10^{-9}}[/tex]
[tex]T=0.002505=2.505\times10^{-3}[/tex]
[tex]T=0.25\%[/tex]
Hence, The probability that the electron will tunnel the barrier is 0.25%.