Answer:
d (last choice)
Step-by-step explanation:
The explicit form of a geometric sequence is [tex]a_n=a_1 \cdot r^{n-1}[/tex] where [tex]a_1[/tex] is the first term while [tex]r[/tex] is the common ratio.
We are given the first term [tex]a_1=47[/tex].
We are given the sixth term [tex]a_6=-789929[/tex].
If we divide 6th term by 1st term this is the result:
[tex]\frac{a_1 \cdot r^5}{a_1 }=\frac{-789929}{47}[/tex]
Simplify both sides:
[tex]r^5=-16807[/tex]
Take the fifth root of both sides:
[tex]r=-7[/tex]
The common ratio is -7.
So all we have to do is start with the first term and keep multiplying by -7 to get the other terms.
[tex]a_1=47[/tex]
[tex]a_2=47(-7)=-329[/tex]
[tex]a_3=47(-7)^2=2303[/tex]
[tex]a_4=47(-7)^3=-16121[/tex]
[tex]a_5=47(-7)^4=112847[/tex]
[tex]a_6=47(-7)^5=-789929[/tex]
The terms -329,2303,-16121,112847 are what we are looking for in our choices.
That's the last choice.