Answer:
Step-by-step explanation:
The point-slope form of an equation of a line:
[tex]y-y_1=m(x-x_1)[/tex]
m - slope
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
============================================
We have the points (-4, -3) and (12, 1).
Substitute:
[tex]m=d\frac{1-(-3)}{12-(-4)}=\dfrac{4}{16}=\dfrac{1}{4}[/tex]
Put the volume of a slope and the coordinates of the point (12, 1) to the equation of a line:
[tex]y-1=\dfrac{1}{4}(x-12)[/tex]
The standard formula of an equation of a line:
[tex]Ax+By=C[/tex]
Convert:
[tex]y-1=\dfrac{1}{4}(x-12)[/tex] multiply both sides by 4
[tex]4y-4=x-12[/tex] add 4 to both sides
[tex]4y=x-8[/tex] subtract x from both sides
[tex]-x+4y=-8[/tex] change the signs
[tex]x-4y=8[/tex]