Answer:
y = -1/24 x³ + 5/12 x² − 35/24 x + 25/12
Explanation:
A cubic has the form:
y = ax³ + bx² + cx + d
Given four points, we can write a system of equations:
1 = a + b + c + d
1/2 = 8a + 4b + 2c + d
1/3 = 27a + 9b + 3c + d
1/4 = 64a + 16b + 4c + d
Solving this algebraically would be time-consuming, but we can use matrices to make it easy.
[tex]\left[\begin{array}{cccc}1&1&1&1\\8&4&2&1\\27&9&3&1\\64&16&4&1\end{array}\right]\left[\begin{array}{cccc}a\\b\\c\\d\end{array}\right]=\left[\begin{array}{cccc}1\\1/2\\1/3\\1/4\end{array}\right][/tex]
First, we find the inverse of the coefficient matrix. This is messy to do by hand, so let's use a calculator:
[tex]\left[\begin{array}{cccc}1&1&1&1\\8&4&2&1\\27&9&3&1\\64&16&4&1\end{array}\right] ^{-1} =-\frac{1}{12}\left[\begin{array}{cccc}2&-6&6&-2\\-18&48&-42&12\\52&-114&84&-22\\-48&72&-48&12\end{array}\right][/tex]
Now we multiply by the solution matrix (again using a calculator):
[tex]-\frac{1}{12} \left[\begin{array}{cccc}2&-6&6&-2\\-18&48&-42&12\\52&-114&84&-22\\-48&72&-48&12\end{array}\right]\left[\begin{array}{cccc}1\\1/2\\1/3\\1/4\end{array}\right] =\left[\begin{array}{cccc}-1/24\\5/12\\-35/24\\25/12\end{array}\right][/tex]
So the cubic is:
y = -1/24 x³ + 5/12 x² − 35/24 x + 25/12