A rectangular prism with a volume of 666 cubic units is filled with cubes with side lengths of \dfrac12 2 1 ? start fraction, 1, divided by, 2, end fraction unit. How many \dfrac12 2 1 ? start fraction, 1, divided by, 2, end fraction unit cubes does it take to fill the prism?

Respuesta :

Answer:

[tex]48\ cubes[/tex]

Step-by-step explanation:

we know that

The volume of the rectangular prism is equal to

[tex]V=6\ unit^{3}[/tex]

step 1

Find the volume of one cube

The volume of the cube is equal to

[tex]V=b^{3}[/tex]

where

b is the side length of the cube

we have

[tex]b=\frac{1}{2}\ unit[/tex]

substitute

[tex]V=(\frac{1}{2})^{3}[/tex]

[tex]V=\frac{1}{8}\ unit^{3}[/tex]

step 2

To find out the number of cubes needed to fill the prism, divide the volume of the rectangular prism by the volume of one cube

so

[tex]6/(1/8)=48\ cubes[/tex]

Answer

48

Step-by-step explanation:

You probably copy and pasted the question from khan academy or soemthing cuz this is what happens but i verifyed that its 48 trust me

ACCESS MORE