Respuesta :
Answer:
Area = 24 square unit,
Fourth vertex = (-4, -3)
Step-by-step explanation:
Suppose we have a parallelogram ABCD,
Having vertex A(1, -2), B(2, 3), and C(-3, 2),
Let D(x,y) be the fourth vertex of the parallelogram,
∵ The diagonals of a parallelogram bisect each other,
Thus, the midpoint of AC = midpoint of BD
[tex](\frac{1-3}{2}, \frac{-2+2}{2})=(\frac{2+x}{2}, \frac{3+y}{2})[/tex]
[tex](\frac{-2}{2}, 0)=(\frac{2+x}{2}, \frac{3+y}{2})[/tex]
By comparing,
[tex]-2=2+x\implies x=-4[/tex]
[tex]3+y=0\implies y = -3[/tex]
Thus, the fourth vertex is (-4, -3),
Now, the area of the parallelogram ABCD = 2 × area of triangle ABC (Because both diagonals divide the parallelogram in two equal triangles)
Area of a triangle having vertex [tex](x_1, y_1)[/tex], [tex](x_2, y_2)[/tex] and [tex](x_3, y_3)[/tex] is,
[tex]A=\frac{1}{2}|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|[/tex]
So, the area of triangle ABC
[tex]A=\frac{1}{2}|(1(3-2)+2(2+2)-3(-2-3)}|[/tex]
[tex]=\frac{1}{2}(1+8+15)[/tex]
[tex]=\frac{1}{2}\times 24[/tex]
[tex]=12\text{ square unit}[/tex]
Hence, the area of the parallelogram ABCD = 2 × 12 = 24 square unit.