Respuesta :
Answer:
The electric field is [tex]35\cos(90\pi t)\ mV/m[/tex]
Explanation:
Given that,
Radius = 2.00 cm
Number of turns per unit length [tex]n= 1.65\times10^{3}[/tex]
Current [tex]I = 6.00\sin 90\pi t[/tex]
We need to calculate the induced emf
[tex]\epsilon =\mu_{0}nA\dfrac{dI}{dt}[/tex]
Where, n = number of turns per unit length
A = area of cross section
[tex]\dfrac{dI}{dt}[/tex]=rate of current
Formula of electric field is defined as,
[tex]E=\dfrac{\epsilon}{2\pi r}[/tex]
Where, r = radius
Put the value of emf in equation (I)
[tex]E=\dfrac{\mu_{0}nA\dfrac{dI}{dt}}{2\pi r}[/tex]....(II)
We need to calculate the rate of current
[tex]I=6.00\sin 90\pi t[/tex]....(III)
On differentiating equation (III)
[tex]\dfrac{dI}{dt}=90\pi\times6.00\cos(90\pi t)[/tex]
Now, put the value of rate of current in equation (II)
[tex]E=\dfrac{4\pi\times10^{-7}\times1.65\times10^{3}\times\pi\times(2.00\times10^{-2})^2\times90\pi\times6.00\cos(90\pi t)}{2\pi\times 2.00\times10^{-2}}[/tex]
[tex]E=35\cos(90\pi t)\ mV/m[/tex]
Hence, The electric field is [tex]35\cos(90\pi t)\ mV/m[/tex]
Answer:
bruh I really dont know im just trying to set this account
Explanation: