When a particle of mass m is at (x,0), it is attracted toward the origin with a force whose magnitude is k/x^2 where k is some constant. If a particle starts from rest at x = b and no other forces act on it, calculate the work done on it by the time it reaches x = a, 0 < a < b.

Respuesta :

Answer:

[tex]W=k\frac{(b-a)}{ab}[/tex]

Explanation:

Given:

Force, [tex]F={k}{x^2}[/tex]

Now we know,

work done, W = Force × Displacement

Now for the small displacement, dx the work done will be

W=F.dx

Now for the work done from 'a' to 'b' will be

[tex]W=\int\limits^b_a {F} \, dx[/tex]

or

[tex]W=\int\limits^b_a {\frac{k}{x^2}} \, dx[/tex]

now for the given condition 0<a<b , and the particle is moving from point b to the point 'a'

thus, the work done will be negative

therefore,

[tex]W=\int\limits^a_b {\frac{k}{x^2}} \, (-dx)[/tex]

or

[tex]W=-k\int\limits^a_b {\frac{1}{x^2}} \, dx[/tex]

or

[tex]W=-k[\frac{1}{x}]^b_a[/tex]

or

[tex]W=-k[\frac{1}{b}-\frac{1}{a}][/tex]

or

[tex]W=-k\frac{(a-b)}{ab}[/tex]

or

[tex]W=k\frac{(b-a)}{ab}[/tex]  (Answer)