Answer:
[tex]W=k\frac{(b-a)}{ab}[/tex]
Explanation:
Given:
Force, [tex]F={k}{x^2}[/tex]
Now we know,
work done, W = Force × Displacement
Now for the small displacement, dx the work done will be
W=F.dx
Now for the work done from 'a' to 'b' will be
[tex]W=\int\limits^b_a {F} \, dx[/tex]
or
[tex]W=\int\limits^b_a {\frac{k}{x^2}} \, dx[/tex]
now for the given condition 0<a<b , and the particle is moving from point b to the point 'a'
thus, the work done will be negative
therefore,
[tex]W=\int\limits^a_b {\frac{k}{x^2}} \, (-dx)[/tex]
or
[tex]W=-k\int\limits^a_b {\frac{1}{x^2}} \, dx[/tex]
or
[tex]W=-k[\frac{1}{x}]^b_a[/tex]
or
[tex]W=-k[\frac{1}{b}-\frac{1}{a}][/tex]
or
[tex]W=-k\frac{(a-b)}{ab}[/tex]
or
[tex]W=k\frac{(b-a)}{ab}[/tex] (Answer)