Respuesta :
Answer: (141.1, 156.48)
Step-by-step explanation:
Given sample statistics : [tex]n=45[/tex]
[tex]\overline{x}=148.79\text{ lb}[/tex]
[tex]\sigma=31.37\text{ lb}[/tex]
a) We know that the best point estimate of the population mean is the sample mean.
Therefore, the best point estimate of the mean weight of all women = [tex]\mu=148.79\text{ lb}[/tex]
b) The confidence interval for the population mean is given by :-
[tex]\mu\ \pm E[/tex], where E is the margin of error.
Formula for Margin of error :-
[tex]z_{\alpha/2}\times\dfrac{\sigma}{\sqrt{n}}[/tex]
Given : Significance level : [tex]\alpha=1-0.90=0.1[/tex]
Critical value : [tex]z_{\alpha/2}=z_{0.05}=\pm1.645[/tex]
Margin of error : [tex]E=1.645\times\dfrac{31.37}{\sqrt{45}}\approx 7.69[/tex]
Now, the 90% confidence interval for the population mean will be :-
[tex]148.79\ \pm\ 7.69 =(148.79-7.69\ ,\ 148.79+7.69)=(141.1,\ 156.48)[/tex]
Hence, the 90% confidence interval estimate of the mean weight of all women= (141.1, 156.48)