Answer:
3A is the larger of the two currents.
Explanation:
Let the currents in the two wires be I₁ and I₂
given:
Magnitude of the electric field, B = 4.0μT = 4.0×10⁻⁶T
Distance, R = 10cm = 0.1m
Ratio of the current = I₁ : I₂ = 3 : 1
Now, the magnitude of a magnetic field at a distance 'R' due to the current 'I' is given as
[tex]B = \frac{\mu_oI}{2\pi R}[/tex]
Where [tex]\mu_o[/tex] is the magnitude constant = 4π×10⁻⁷ H/m
Thus, the magnitude of a magnetic field due to I₁ will be
[tex]B_1 = \frac{\mu_oI_1}{2\pi R}[/tex]
[tex]B_2 = \frac{\mu_oI_2}{2\pi R}[/tex]
given,
B = B₁ - B₂ (since both the currents are in the same direction and parallel)
substituting the values of B, B₁ and B₂
we get
4.0×10⁻⁶T = [tex]\frac{\mu_oI_1}{2\pi R}[/tex] - [tex]\frac{\mu_oI_2}{2\pi R}[/tex]
or
4.0×10⁻⁶T = [tex]\frac{\mu_o}{2\pi R}\times (I_1-I_2 )[/tex]
also
[tex]\frac{I_1}{I_2} = \frac{3}{1}[/tex]
⇒[tex]I_1 = 3\times I_2[/tex]
substituting the values in the above equation we get
4.0×10⁻⁶T = [tex]\frac{4\pi\times 10^{-7}}{2\pi 0.1}\times (3 I_2-I_2)[/tex]
⇒[tex]I_2 = 1A[/tex]
also
[tex]I_1 = 3\times I_2[/tex]
⇒[tex]I_1 = 3\times 1A[/tex]
⇒[tex]I_1 = 3A[/tex]
Hence, the larger of the two currents is 3A