Respuesta :
Answer:
The largest longitude separation is 3.6 cm.
Explanation:
Given that,
Thickness[tex]\bar{y}= 4\ cm[/tex]
Wide = 10 cm
Vertical shear = 1000 N
Shearing force = 200 N
We need to calculate the shear flow
Using formula of shear flow
[tex]q=\dfrac{VQ}{I}[/tex]
Where, q = shear flow
V = shear force
[tex]Q = \bar{y}\times A[/tex]
Where, A = area of cross section
[tex]\bar{y}[/tex] =distance from natural axis to centroid of A
I = moment of inertia
We need to calculate the Area
Using formula of area
[tex]A=4\times10=40 cm^2[/tex]
We need to calculate the moment of inertia
[tex]I=\dfrac{bd^3}{12}[/tex]
[tex]I=\dfrac{10\times12^3}{12}[/tex]
[tex]I=1440\ cm^4[/tex]
Put the value into the formula of shear flow
[tex]q=\dfrac{1000\times40\times4}{1440}[/tex]
[tex]q=111.11\ N/cm[/tex]
We need to calculate the largest longitude separation
Using formula of separation
[tex]q=\dfrac{F}{\delta}[/tex]
Put the value into the formula
[tex]111.11=\dfrac{2\times200}{\delta}[/tex]
[tex]\delta=\dfrac{2\times200}{111.11}[/tex]
[tex]\delta=3.6\ cm[/tex]
Hence, The largest longitude separation is 3.6 cm.