Answer:
[tex]\frac {p_2- p_1}{\rho g} = 31.06 m[/tex]
Explanation:
from bernoulli's theorem we have
[tex]\frac{p_1}{\rho g} + \frac{v_1^{2}}{2g} +z_1 = \frac{p_2}{\rho g} + \frac{v_2^{2}}{2g} +z_2 + h_f[/tex]
we need to find pressure head difference i.e.
[tex]\frac {p_2- p_1}{\rho g} = (z_1 - z_2) - h_f[/tex]
where h_f id head loss
[tex]h_f = \frac{flv^{2}}{D 2g}[/tex]
velocity v =[tex] \frac{1}{n} * R^{2/3} S^{2/3}[/tex]
[tex]S = \frac{\delta h}{L} = \frac{40}{150} = 0.267[/tex]
hydraulic mean radius R =[tex] \frac{A}{P} = \frac{hw}{2h+w} [/tex]
[tex]R = \frac{40*1}{2*40+1} = 0.493 m[/tex]
so velocity is =[tex] \frac{1}{0.013} * 0.493^{2/3} 0.267^{1/2}[/tex]
v = 24.80 m/s
head loss
[tex]h_f = \frac{0.0019*150*24.80^{2}}{1* 2*9.81}[/tex]
[tex]h_f =8.93 m[/tex]
pressure difference is
[tex]\frac {p_2- p_1}{\rho g} = 40 - 8.93 = 31.06 m[/tex]
[tex]\frac {p_2- p_1}{\rho g} = 31.06 m[/tex]