Answer:
v/U=0.79
Explanation:
Given u=[tex]u=\frac{Uy}{\partial }=\frac{Uy}{cx^{1/2}}[/tex]
Now for the given flow to be possible it should satisfy continuity equation
[tex]\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0[/tex]
Applying values in this equation we have
[tex]\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0\\\\\frac{\partial u}{\partial x}=\frac{\partial (\frac{Uy}{cx^{1/2}})}{\partial x}\\\\\frac{\partial u}{\partial x}=\frac{-1}{2}\frac{Uy}{cx^{3/2}}\\\\[/tex]
Thus we have
[tex]\frac{\partial v}{\partial y}=\frac{1}{2}\frac{Uy}{cx^{3/2}}\\\\\therefore \int \partial v=\int \frac{1}{2}\frac{Uy}{cx^{3/2}}\partial x\\\\v=\frac{1}{4}\frac{Uy^{2}}{cx^{3/2}}\\\\v=\frac{1}{4}\frac{uy}{x}[/tex] Hence proved [tex]\because u=\frac{Uy}{cx^{1/2}}[/tex]
For maximum value of v/U put y =[tex]\partial[/tex]
[tex]v=\frac{1}{4}\frac{Uy^{2}}{cx^{3/2}}[/tex]
[tex]v=\frac{1}{4}\frac{Uy^{2}}{cx^{3/2}}\\\\\frac{v}{U}=\frac{\partial ^{2}}{4cx^{3/2}}\\\\[/tex]
Thus solving we get using the given values
v/U=0.79