Respuesta :
Answer : The magnitude of the lattice energy for CsCl is, 667 KJ/mole
Explanation :
The steps involved in the born-Haber cycle for the formation of [tex]CsCl[/tex] :
(1) Conversion of solid calcium into gaseous cesium atoms.
[tex]Cs(s)\overset{\Delta H_s}\rightarrow Cs(g)[/tex]
[tex]\Delta H_s[/tex] = sublimation energy of calcium
(2) Conversion of gaseous cesium atoms into gaseous cesium ions.
[tex]Ca(g)\overset{\Delta H_I}\rightarrow Ca^{+1}(g)[/tex]
[tex]\Delta H_I[/tex] = ionization energy of calcium
(3) Conversion of molecular gaseous chlorine into gaseous chlorine atoms.
[tex]Cl_2(g)\overset{\frac{1}{2}\Delta H_D}\rightarrow Cl(g)[/tex]
[tex]\Delta H_D[/tex] = dissociation energy of chlorine
(4) Conversion of gaseous chlorine atoms into gaseous chlorine ions.
[tex]Cl(g)\overset{\Delta H_E}\rightarrow Cl^-(g)[/tex]
[tex]\Delta H_E[/tex] = electron affinity energy of chlorine
(5) Conversion of gaseous cations and gaseous anion into solid cesium chloride.
[tex]Cs^{1+}(g)+Cl^-(g)\overset{\Delta H_L}\rightarrow CsCl(s)[/tex]
[tex]\Delta H_L[/tex] = lattice energy of calcium chloride
To calculate the overall energy from the born-Haber cycle, the equation used will be:
[tex]\Delta H_f^o=\Delta H_s+\Delta H_I+\Delta H_D+\Delta H_E+\Delta H_L[/tex]
Now put all the given values in this equation, we get:
[tex]-443KJ/mole=76KJ/mole+376KJ/mole+121KJ/mole+(-349KJ/mole)+\Delta H_L[/tex]
[tex]\Delta H_L=-667KJ/mole[/tex]
The negative sign indicates that for exothermic reaction, the lattice energy will be negative.
Therefore, the magnitude of the lattice energy for CsCl is, 667 KJ/mole
The magnitude of Lattice energy of CsCl is -676 kJ/mol.
Given Here,
Enthalpy of sublimation of Cs [tex]\rm \bold{ \Delta H(sub ) }[/tex] = +76 kJ/mo
Ionization Energy for Potassium IE(Cs) = +376 kJ/mol
Electron affinity for Chlorine is EA(Cl) = −349 kJ/mol.
Bond dissociation energy of Chlorine, BE(Cl) = +121 kJ/mol
Enthalpy of formation for CsCl, [tex]\rm \bold{ \Delta H(f) }[/tex] = −436.5 kj/mol .
The lattice energy of KCl can be calculated from the formula,
[tex]\rm \bold {U(CsCl) = \Delta Hf(CsCl) - [ \Delta H(sub) + IE(Cs) +BE(Cl_2) + EA(Cl)]}[/tex]
U( CsCl) = -436 - [+76 +376 +121 kJ/mol -349]
U( CsCl) = -676 kJ/mol
Hence we can calculate that the magnitude of Lattice energy of CsCl is -676 kJ/mol.
To know more about Lattice Energy, refer to the link:
https://brainly.com/question/18222315?referrer=searchResults