Water flows in a pipe of diameter 0.5 m. The dianeter of the to 1,0 m. A U-tube manometer is of the enlargement with joining ercury levels 5 mm. Determine the flow rate as well as the pressure 3 Water pipe suddenly enlarges connected to either side pipes which contain water. The difference in m head loss as a result of the enlargement.

Respuesta :

Answer:

Q = 0.943[tex]m^{3}/s[/tex]

[tex]h_{L}[/tex] = 0.6605 m

Explanation:

Given :

Diameter, d₁ = 0.5 m

Area, A₁ = [tex]\frac{\pi }{4}\times 0.5^{2}[/tex]

             = 0.19625 [tex]m^{2}[/tex]

Enlargement diameter, d₂ = 1 m

Enlargement Area, A₂ = [tex]\frac{\pi }{4}\times 1^{2}[/tex]

             = 0.785 [tex]m^{2}[/tex]

Manometric difference, h = 35 mm

                                          =35 X [tex]10^{-3}[/tex] m

From manometer , we get

[tex]P_{1}+\rho _{w}.g.z_{1}+\rho _{m}.g.h=P_{2}+\rho _{w}.g.(z_{1}+h)[/tex]

[tex]P_{1}-P_{2}=(\rho _{w}-\rho _{m}).g.h[/tex]

[tex]\frac{P_{1}-P_{2}}{\rho _{w}.g}=(1-\frac{\rho _{m}}{\rho _{w}})\times h[/tex]

                                                = [tex](1-13.6)\times 35\times 10^{-3}[/tex]

                                                = -0.441

Now from newtons first law,

[tex]\frac{P_{1}-P_{2}}{\rho _{w}.g}=\frac{V_{2}^{2}-V_{1}V_{2}}{g}[/tex]

-0.441 = [tex]\frac{Q^{2}}{9.81}\times (\frac{1}{A_{2}^{2}}-\frac{1}{A_{1}A_{2}})[/tex]

-0.441 = [tex]\frac{Q^{2}}{9.81}\times (\frac{1}{0.785^{2}}-\frac{1}{(0.19625\times 0.785)^{2}})[/tex]

Therefore. Q = 0.943 [tex]m^{3} /s[/tex]

Now V₁ = [tex]\frac{Q}{A_{1}}[/tex]

            = [tex]\frac{0.943}{0.19625}[/tex]

            = 4.80 m/s

       V₂ =  [tex]\frac{Q}{A_{2}}[/tex]

            = [tex]\frac{0.943}{0.785}[/tex]

            = 1.20 m/s

Therefore, heat loss due to sudden enlargement is given by

  [tex]h_{L}=\frac{(V_{1}-V_{2})^{2}}{2g}[/tex]

[tex]h_{L}=\frac{(4.80-1.20)^{2}}{2\times 9.81}[/tex]

               = 0.6605 m

RELAXING NOICE
Relax