Respuesta :
Answer:
Q = 0.943[tex]m^{3}/s[/tex]
[tex]h_{L}[/tex] = 0.6605 m
Explanation:
Given :
Diameter, d₁ = 0.5 m
Area, A₁ = [tex]\frac{\pi }{4}\times 0.5^{2}[/tex]
= 0.19625 [tex]m^{2}[/tex]
Enlargement diameter, d₂ = 1 m
Enlargement Area, A₂ = [tex]\frac{\pi }{4}\times 1^{2}[/tex]
= 0.785 [tex]m^{2}[/tex]
Manometric difference, h = 35 mm
=35 X [tex]10^{-3}[/tex] m
From manometer , we get
[tex]P_{1}+\rho _{w}.g.z_{1}+\rho _{m}.g.h=P_{2}+\rho _{w}.g.(z_{1}+h)[/tex]
[tex]P_{1}-P_{2}=(\rho _{w}-\rho _{m}).g.h[/tex]
[tex]\frac{P_{1}-P_{2}}{\rho _{w}.g}=(1-\frac{\rho _{m}}{\rho _{w}})\times h[/tex]
= [tex](1-13.6)\times 35\times 10^{-3}[/tex]
= -0.441
Now from newtons first law,
[tex]\frac{P_{1}-P_{2}}{\rho _{w}.g}=\frac{V_{2}^{2}-V_{1}V_{2}}{g}[/tex]
-0.441 = [tex]\frac{Q^{2}}{9.81}\times (\frac{1}{A_{2}^{2}}-\frac{1}{A_{1}A_{2}})[/tex]
-0.441 = [tex]\frac{Q^{2}}{9.81}\times (\frac{1}{0.785^{2}}-\frac{1}{(0.19625\times 0.785)^{2}})[/tex]
Therefore. Q = 0.943 [tex]m^{3} /s[/tex]
Now V₁ = [tex]\frac{Q}{A_{1}}[/tex]
= [tex]\frac{0.943}{0.19625}[/tex]
= 4.80 m/s
V₂ = [tex]\frac{Q}{A_{2}}[/tex]
= [tex]\frac{0.943}{0.785}[/tex]
= 1.20 m/s
Therefore, heat loss due to sudden enlargement is given by
[tex]h_{L}=\frac{(V_{1}-V_{2})^{2}}{2g}[/tex]
[tex]h_{L}=\frac{(4.80-1.20)^{2}}{2\times 9.81}[/tex]
= 0.6605 m
