Answer:
Q = 0.118 [tex]m^{3}[/tex]/s
Explanation:
Given :
diameter of the pipe, d = 150 mm
= 0.15 m
Pitot tube co efficient, [tex]C_{v}[/tex] = 1.05
manometer reading is given, x = 167 mm
= 0.167 m
From manometer reading,we can find the difference between the manometer height, h
[tex]h =x\times\left [ \frac{S_{m}}{S_{w}}-1 \right ][/tex]
[tex]h =0.167\times\left [ \frac{13.6}{1}-1 \right ][/tex]
h = 2.1042 m
Now, average velocity is v = [tex]C_{v}[/tex][tex]\sqrt{2.g.h}[/tex]
= [tex]1.05\times \sqrt{2\times 9.81\times 2.1042}[/tex]
= 6.74 m/s
Area of the pipe, A = [tex]\frac{\pi }{4}\times d^{2}[/tex]
= [tex]\frac{\pi }{4}\times 0.15^{2}[/tex]
= 0.0176 [tex]m^{2}[/tex]
Therefore, flow rate is given by, Q = A.v
= 0.0176 X 6.74
= 0.118[tex]m^{3}[/tex]/s