a. Substitute the given solutions and their derivatives into the ODE.
[tex]y_1=x\implies {y_1}'=1\implies{y_1}''=0[/tex]
[tex]x^2y''-xy'+y=-x+x=0[/tex]
[tex]y_2=x\ln x\implies{y_1}'=\ln x+1\implies{y_1}''=\dfrac1x[/tex]
[tex]x^2y''-xy'+y=x-x(\ln x+1)+x\ln x=0[/tex]
Both solutions satisfy the ODE.
b. The Wronskian determinant is
[tex]\begin{vmatrix}x&x\ln x\\1&\ln x+1\end{vmatrix}=x(\ln x+1)-x\ln x=x\neq0[/tex]
so the solutions are indeed independent.
c. The ODE has general solution [tex]y(t)=C_1x+C_2x\ln x[/tex]. Then with the given initial conditions, the constants satisfy
[tex]y(1)=7\implies 7=C_1[/tex]
[tex]y'(1)=2\implies2=C_1+C_2\implies C_2=-5[/tex]
So the ODE has the particular solution,
[tex]\boxed{y(t)=7x-5x\ln x}[/tex]