Tin atoms are introduced into a FCC copper crystal, producing an alloy with a lattice pa- rameter of 3.7589 x 10-8 cm and a density of 8.772 g/cm3. Calculate the atomic percentage of tin present in the alloy.

Respuesta :

Given:

Lattice parameter, a = [tex]3.7589\times 10^{-8}cm[/tex]

[tex]density, \rho = 8.772g/cm^{3}\\[/tex]

Solution:

We know that  for FCC, total no. of atoms in a crystal lattice = 4

let the number of atoms in Tin for alloying be 'n'

⇒ Total no. of Copper atoms in the alloy,  = 4 - n

Also mass of Copper, m = 63.54 g/mol

atomic mass of Tin = 118.69 g/mol

We Know density of the crystal lattice is given by the formula:

[tex]\rho = \frac{m\times Z}{a^{3}\times N_{A}}[/tex]                 (1)

where,

[tex]N_{A}[/tex] = Avagadro's number =  [tex]6.23\times 10_{23}[/tex]

Putting all the values in eqn (1), we get

[tex]8.772 = \frac{118.69\times x\times (4 - n)\times 63.54}{(3.7589\times 10^{-8})^{3}\times 6.023\times 10^{23}}[/tex]

280.6 = 55.15n +254.16

n = 0.479 atoms/cell

Now to calculate the atomic percentage of Tin present in the alloy:

atomic percentage = [tex]\frac{no. of atoms in Tin/cell}{Total no. of atoms in FCC lattice}[/tex]

atomic % Tin present in alloy = [tex] \frac{0.479}{4}[/tex] = [tex]0.1198\times 100[/tex]

atomic % Tin present in alloy = 11.98%

ACCESS MORE