Answer: [tex]793.2946 < \mu_1 - \mu_2 < 808.7054[/tex]
Step-by-step explanation:
The confidence interval for the difference of two population mean is given by :-
[tex](\overline{x_1}-\overline{x}_2)\pm z_{\alpha/2}\sqrt{\dfrac{s_1^2}{n_1}+\dfrac{s^2_2}{n_2}}[/tex]
Given : [tex]\overline{x}_1=958,\ \overline{x}_2=157[/tex]
[tex]s_1=77,\ s_2=88[/tex]
Significance level : [tex]\alpha=1-0.85=0.15[/tex]
Critical value : [tex]z_{\alpha/2}=z_{0.075}=\pm1.44[/tex]
We assume that the two samples are independent simple random samples selected from normally distributed populations.
Now, the confidence interval for the difference of two population mean is given by :-
[tex](958-157)\pm 1.44\sqrt{\dfrac{(77)^2}{478}+\dfrac{(88)^2}{478}}\\\\\approx801\pm7.70=(801-7.7016,801+7.7016)\\\\(793.2984,808.7016)\subset(793.2946,\ 808.7054)[/tex]
Hence, the 85% confidence interval for [tex]\mu_1-\mu_2[/tex] is given by :-
[tex]793.2946 < \mu_1 - \mu_2 < 808.7054[/tex]