Answer:
a) Range = 200
b) Standard Deviation = 75.03
Step-by-step explanation:
Prices: $189 $219 $259 $329 $129
a) Range
Range = Maximum value - Minimum value
Maximum value = 329
Minimum value = 129
So, Range = 329 - 129
Range = 200
b) Standard Deviation
The formula used for finding standard deviation is:
[tex]\sigma=\sqrt{\frac{1}{N-1}\sum_{i=1}^N(x_{i}-\mu)^2}[/tex]
N is No of terms
μ is mean
Mean μ = (189+219+259+329+129)/5 = 225
x x-μ (x-μ)^2
189 189-225= -36 1296
219 219 - 225= -6 36
259 259-225= 34 1156
329 329-225=104 10,816
129 129-225=-96 9216
Now, find [tex]\sum_{i=1}^N(x_{i}-\mu)^2[/tex]
[tex]\sum_{i=1}^N(x_{i}-\mu)^2=1296+36+1156+10816+9216[/tex]
[tex]\sum_{i=1}^N(x_{i}-\mu)^2=22520[/tex]
Now finding standard deviation [tex]\sigma[/tex]
[tex]\sigma=\sqrt{\frac{1}{N-1}\sum_{i=1}^N(x_{i}-\mu)^2}[/tex]
[tex]\sigma=\sqrt{\frac{1}{5-1}(22520)}\\\sigma=\sqrt{5630}\\\sigma=75.03[/tex]