Answer:
[tex]-\frac{3x^{2}}{2}[/tex]
Explanation:
It is given that y component is
v = 3xy + [tex]x^{2}[/tex]
[tex]\Rightarrow \frac{\partial v}{\partial y}= 3 x[/tex]
For an incompressible flow, the continuity equation is written in differential form as
[tex]\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0[/tex]
[tex]\Rightarrow \frac{\partial u}{\partial x}= -\frac{\partial v}{\partial y}[/tex]
[tex]\Rightarrow \frac{\partial u}{\partial x}= - 3x[/tex]
Now solving for x component of velocity is
u = - [tex]\int 3x.dx[/tex]
= - [tex]\frac{3x^{2}}{2}[/tex]
Therefore, x component of velocity is - [tex]\frac{3x^{2}}{2}[/tex]