Respuesta :

Answer:

[tex]-\frac{3x^{2}}{2}[/tex]

Explanation:

It is given that y component is

v = 3xy + [tex]x^{2}[/tex]

[tex]\Rightarrow \frac{\partial v}{\partial y}= 3 x[/tex]

For an incompressible flow, the continuity equation is written in differential form as

[tex]\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0[/tex]

[tex]\Rightarrow \frac{\partial u}{\partial x}= -\frac{\partial v}{\partial y}[/tex]

[tex]\Rightarrow \frac{\partial u}{\partial x}= - 3x[/tex]

Now solving for x component of velocity is

u = - [tex]\int 3x.dx[/tex]

  = - [tex]\frac{3x^{2}}{2}[/tex]

Therefore, x component of velocity is - [tex]\frac{3x^{2}}{2}[/tex]  

ACCESS MORE