Answer:
33.429 N-m
Explanation:
Given :
Inclination angle of two shaft, α = 20°
Speed of shaft A, [tex]N_{A}[/tex] = 1000 rpm
Mass of flywheel, m = 30 kg
Radius of Gyration, k =100 mm
= 0.1 m
Now we know that for maximum velocity,
[tex]\frac{N_{B}}{N_{A}} = \frac{cos\alpha }{1 - sin^{2}\alpha }[/tex]
[tex]\frac{N_{B}}{1000} = \frac{cos20}{1 - sin^{2}20 }[/tex]
[tex]N_{B}[/tex] = 1064.1 rpm
Now we know
Mass of flywheel, m = 30 kg
Radius of Gyration, k =100 mm
= 0.1 m
Therefore moment of inertia of flywheel, I = m.[tex]k^{2}[/tex]
=30 X [tex]0.1^{2}[/tex]
= 0.3 kg-[tex]m^{2}[/tex]
Now torque on the output shaft
T₂ = I x ω
= 0.3 X 1064.2 rpm
= [tex]0.3\times \frac{2\pi \times 1064.1}{60}[/tex]
= 33.429 N-m
Torque on the Shaft B is 33.429 N-m