The two shafts of a Hooke’s coupling have their axes inclined at 20°.The shaft A revolves at a uniform speed of 1000 rpm. The shaft B carries a flywheel of mass 30 kg. If the radius of gyration of the flywheel is 100 mm, find the maximum torque in shaft B.

Respuesta :

Answer:

33.429 N-m

Explanation:

Given :

Inclination angle of two shaft, α = 20°

Speed of shaft A, [tex]N_{A}[/tex] = 1000 rpm

Mass of flywheel, m = 30 kg

Radius of Gyration, k =100 mm

                                   = 0.1 m

Now we know that for maximum velocity,

[tex]\frac{N_{B}}{N_{A}} = \frac{cos\alpha }{1 - sin^{2}\alpha }[/tex]

[tex]\frac{N_{B}}{1000} = \frac{cos20}{1 - sin^{2}20 }[/tex]

[tex]N_{B}[/tex] = 1064.1 rpm

Now we know

Mass of flywheel, m = 30 kg

Radius of Gyration, k =100 mm

                                   = 0.1 m

Therefore moment of inertia of flywheel, I = m.[tex]k^{2}[/tex]

                                                                      =30 X [tex]0.1^{2}[/tex]

                                                                     = 0.3 kg-[tex]m^{2}[/tex]

Now torque on the output shaft

T₂ = I x ω

    = 0.3 X 1064.2 rpm

    = [tex]0.3\times \frac{2\pi \times 1064.1}{60}[/tex]

     = 33.429 N-m

Torque on the Shaft B is 33.429 N-m

ACCESS MORE