The block rests at a distance of 2 m from the center of the platform. If the coefficient of static friction between the block and the platform is ms = 0.3, determine the maximum speed which the block can attain before it begins to slip. Assume the angular motion of the disk is slowly increasing.

Respuesta :

Answer:

v = 2.43 m/s

Explanation:

As we know that block is placed at rest at distance

d = 2 m

so here the centripetal force on the block to move in the circle is due to static friction force

now when block is just going to slide over the disc

then the friction force is maximum static friction which is given as

[tex]\mu_s mg = \frac{mv^2}{R}[/tex]

now we have

[tex]v = \sqrt{\mu_s Rg}[/tex]

now plug in the values in the above equation

[tex]v = \sqrt{0.3(2)(9.81)}[/tex]

[tex]v = 2.43 m/s[/tex]

ACCESS MORE