Respuesta :
Given:
No. average molecular weight, [tex]\bar{M_{n}}[/tex] = 1350000 g/mol
Formulae to be used:
1) m = [tex]n_{1}A_{C} + n_{2} A_{H}[/tex] Â Â Â Â Â Â Â Â Â (1)
2) [tex]D_{p} = \frac{\bar{M_{n}}}{m}[/tex] Â Â Â Â Â Â Â Â Â (2)
where,
m = total average weight of the combination
[tex]A_{C}[/tex] = Atomic weight of carbon
[tex]A_{H}[/tex] = Atomic weight of hydrogen
[tex]D_{p}[/tex] = Degree of polymerization
Solution:
No. of both the types of repeat unit is sameas it is a copolymer.
For styrene, there are 8 carbon and 8 hydrogen atoms and for buta di-ene repeat unit, there are 4 carbon and 6 hydrogen atoms.
Therefore, the average weight of the combined unit is given by eqn (1)
m = 12(12.01) + 14(1.008) = 158.23 g/mol
Using eqn (2) to calculate average of repeat units per molecule:
[tex]D_{p}[/tex] = [tex]\frac{1350000}{158.23}[/tex] = 8531.77 ≈ 8532
Following are the calculation of the molecule: Â
Given:
Poly(styrene-butadiene) alternating copolymer average molecular weight [tex]= 1350000\ \frac{g}{mol}\\[/tex]
To find:
molecule=?
Solution:
Calculating the styrene's molecular weight[tex]= 104\ \frac{g}{mol}\\\\[/tex]
Calculating the butadiene molecular weight [tex]= 54 \ \frac{g}{mol}\\\\[/tex]
Calculating the weight for the repeating unit [tex]= (104+54) \ \frac{g}{mol} = 158 \ \frac{g}{mol}\\\\[/tex]
[tex]\therefore[/tex]
Calculating the amount of repeating molecules per unit:
[tex]\to \frac{1350000}{158} \\\\\to \frac{675000}{79} \\\\ \to \frac{675000}{79} \\\\ \to 8544.30 \approx 8544[/tex]
Therefore, the final answer is "8544".
Learn more:
brainly.com/question/15604103