The half-life of Radium-226 is 1590 years. If a sample contains 500 mg, how many mg will remain after 2000 years? Preview mg Give your answer accurate to at least 2 decimal places. Get help: Video Video

Respuesta :

Answer:

[tex]a_{n}[/tex]=209.09 mg

Step-by-step explanation:

given: material= radium

half life= 1590 years

initial mass [tex]a_{0}[/tex] =500mg

we know that to calculate the amount left we use

[tex]a_{n}[/tex] = [tex]a_{0}[/tex][tex]\left ( 0.5\right )^{n}[/tex]

[tex]n=\frac{2000}{1590} = 1.2578[/tex]

therefore

[tex]a_{n}[/tex] = [tex]500\times0.5^{1.2578}[/tex]

[tex]a_{n}[/tex]=209.09058407921 mg

[tex]a_{n}[/tex]=209.09 mg amount left after 2000 years