The drilling pipe on an oil rig is made from steel pipe which having thickness of 5-mm and an outside diameter of 90-mm. Calculate the maximum shear stress occur in the pipe if the pipe is turning at 650 rev/min while being powered using 12kW motor.

Respuesta :

Answer:

[tex]\tau_{max}= 3.28 \ MPa[/tex]

Explanation:

outside diameter = 90 mm

inside diameter = 90- 2× t=  90- 2× 5 = 80mm

where t is thickness of pipe.

power (P)  = 12 kW

Revolution (N)= 650 rev/min

we

Power = torque × angular velocity

P= T× ω

ω =  [tex]\frac{2 \pi N}{60}[/tex]

[tex]P=T \times \frac{2\pi N}{60}\\12 \times 10^3=T\times \frac{2\pi \times 650}{60}[/tex]

T=  176.3 Nm

for maximum shear stress

[tex]\frac{\tau_{max}}{y_{max}}=\frac{T}{I_p}[/tex]

where ymax is maximum distance from neutral axis.

[tex]y_{max}=\frac{d_0}{2}= \frac{90}{2}[/tex]= 45 mm

[tex]I_p[/tex]= polar moment area

          = [tex]\frac{\pi}{32} (d_o^4-d_i^4)=\frac{\pi}{32} (90^4-80^4)[/tex]

          = 2,420,008 mm⁴

[tex]\dfrac{\tau_{max}}{45}=\dfrac{176.3 \times 10^3}{2,420,008}[/tex]

[tex]\tau_{max}= 3.28 \ MPa[/tex]