Answer:
[tex]\tau_{max}= 3.28 \ MPa[/tex]
Explanation:
outside diameter = 90 mm
inside diameter = 90- 2× t= 90- 2× 5 = 80mm
where t is thickness of pipe.
power (P) = 12 kW
Revolution (N)= 650 rev/min
we
Power = torque × angular velocity
P= T× ω
ω = [tex]\frac{2 \pi N}{60}[/tex]
[tex]P=T \times \frac{2\pi N}{60}\\12 \times 10^3=T\times \frac{2\pi \times 650}{60}[/tex]
T= 176.3 Nm
for maximum shear stress
[tex]\frac{\tau_{max}}{y_{max}}=\frac{T}{I_p}[/tex]
where ymax is maximum distance from neutral axis.
[tex]y_{max}=\frac{d_0}{2}= \frac{90}{2}[/tex]= 45 mm
[tex]I_p[/tex]= polar moment area
= [tex]\frac{\pi}{32} (d_o^4-d_i^4)=\frac{\pi}{32} (90^4-80^4)[/tex]
= 2,420,008 mm⁴
[tex]\dfrac{\tau_{max}}{45}=\dfrac{176.3 \times 10^3}{2,420,008}[/tex]
[tex]\tau_{max}= 3.28 \ MPa[/tex]