Suppose 1.4 mol of an ideal gas is taken from a volume of 2.5 m3 to a volume of 1.0 m3 via an isothermal compression at 27°C. (a) How much energy is transferred as heat during the compression, and (b) is the transfer to or from the gas?

Respuesta :

Answer:

Part a)

Q = 3198 J

Part b)

It is compression of gas so this is energy transferred to the gas

Explanation:

Part a)

Energy transfer during compression of gas is same as the work done on the gas

In isothermal process work done is given by the equation

[tex]W = nRT ln(\frac{V_2}{V_1})[/tex]

now we know that

n = 1.4 moles

T = 27 degree C = 300 K

[tex]V_2 = 2.5 m^3[/tex]

[tex]V_1 = 1 m^3[/tex]

now we have

[tex]W = (1.4)(8.31)(300)(ln\frac{2.5}{1})[/tex]

[tex]Q = 3198 J[/tex]

Part b)

It is compression of gas so this is energy transferred to the gas