Respuesta :

Answer:

v=82 m/s

s=116m

Explanation:

a=20t

[tex]\frac{\mathrm{d} v}{\mathrm{d} t}=20t\\\int\limits dv =\int(20t) dt\\v={10}t^2+c[/tex]

using condition given at t=0

[tex]-8=10\times 0^2 +c[/tex]

c=-8

now equation becomes

v=10t²-8

v at t= 3s  v=82 m/s

again

[tex]\frac{\mathrm{d} s}{\mathrm{d} t}=10t^2-8[/tex]

[tex]ds=(10t^2-8)dt\\\int\limits ds =\int(10t^2-8) dt\\s=\frac{10}{3} t^2-8t+b[/tex]

now using condition given s=50 at t=0

b=50

now equation becomes

[tex]s=\frac{10}{3}t^3-8t+50[/tex]

calculating s at t=3s

s=116m

Acceleration is the rate of change of velocity over time.

The position and velocity of the particle at t = 3s are 52m/s and 116m, respectively.

The given parameters are:

[tex]\mathbf{a =20ms^{-2}}[/tex] -- acceleration

[tex]\mathbf{u =-8ms^{-1}}[/tex] --- initial velocity

[tex]\mathbf{s_1 =50m}[/tex] --- the starting distance

The velocity at t = 3s is calculated using:

[tex]\mathbf{v =u + at}[/tex]

So, we have:

[tex]\mathbf{v =-8 + 20 \times 3}[/tex]

[tex]\mathbf{v =-8 + 60}[/tex]

[tex]\mathbf{v =52}[/tex]

The position at t = 3 is calculated using:

[tex]\mathbf{s = s_1 + ut +\frac{1}{2}at^2}[/tex]

So, we have:

[tex]\mathbf{s = 50 - 8 \times 3 +\frac{1}{2} \times 20 \times 3^2}[/tex]

[tex]\mathbf{s = 50 - 24 +90 }[/tex]

[tex]\mathbf{s = 116}[/tex]

Hence, the position and velocity of the particle at t = 3s are 52m/s and 116m, respectively.

Read more about acceleration and velocity at:

https://brainly.com/question/14683118

ACCESS MORE