Respuesta :
Answer:
v=82 m/s
s=116m
Explanation:
a=20t
[tex]\frac{\mathrm{d} v}{\mathrm{d} t}=20t\\\int\limits dv =\int(20t) dt\\v={10}t^2+c[/tex]
using condition given at t=0
[tex]-8=10\times 0^2 +c[/tex]
c=-8
now equation becomes
v=10t²-8
v at t= 3s v=82 m/s
again
[tex]\frac{\mathrm{d} s}{\mathrm{d} t}=10t^2-8[/tex]
[tex]ds=(10t^2-8)dt\\\int\limits ds =\int(10t^2-8) dt\\s=\frac{10}{3} t^2-8t+b[/tex]
now using condition given s=50 at t=0
b=50
now equation becomes
[tex]s=\frac{10}{3}t^3-8t+50[/tex]
calculating s at t=3s
s=116m
Acceleration is the rate of change of velocity over time.
The position and velocity of the particle at t = 3s are 52m/s and 116m, respectively.
The given parameters are:
[tex]\mathbf{a =20ms^{-2}}[/tex] -- acceleration
[tex]\mathbf{u =-8ms^{-1}}[/tex] --- initial velocity
[tex]\mathbf{s_1 =50m}[/tex] --- the starting distance
The velocity at t = 3s is calculated using:
[tex]\mathbf{v =u + at}[/tex]
So, we have:
[tex]\mathbf{v =-8 + 20 \times 3}[/tex]
[tex]\mathbf{v =-8 + 60}[/tex]
[tex]\mathbf{v =52}[/tex]
The position at t = 3 is calculated using:
[tex]\mathbf{s = s_1 + ut +\frac{1}{2}at^2}[/tex]
So, we have:
[tex]\mathbf{s = 50 - 8 \times 3 +\frac{1}{2} \times 20 \times 3^2}[/tex]
[tex]\mathbf{s = 50 - 24 +90 }[/tex]
[tex]\mathbf{s = 116}[/tex]
Hence, the position and velocity of the particle at t = 3s are 52m/s and 116m, respectively.
Read more about acceleration and velocity at:
https://brainly.com/question/14683118