Answer:
The confidence interval is [tex]22.805<\mu<24.575[/tex]
Step-by-step explanation:
We have given,
The Z interval (23.305,25.075)
Mean [tex]\bar{x}=23.69[/tex]
Sample n=30
To find : The confidence interval?
Solution :
We know, The confidence interval is in the format of
[tex]\bar{x}-E<\mu<\bar{x}+E[/tex]
E denotes the margin of error,
[tex]E=\frac{U-L}{2}[/tex]
Where, U is the upper limit U=25.075
L is the lower limit L=23.305
[tex]E=\frac{25.075-23.305}{2}[/tex]
[tex]E=\frac{1.77}{2}[/tex]
[tex]E=0.885[/tex]
Substitute the value of E and [tex]\bar{x}[/tex] in the formula,
[tex]23.69-0.885<\mu<23.69+0.885[/tex]
[tex]22.805<\mu<24.575[/tex]
Therefore, The confidence interval is [tex]22.805<\mu<24.575[/tex]