Refer to the accompanying TI-83/84 Plus calculator display of a 95% confidence interval. The sample display results from using a simple random sample of the amounts of tar (in milligrams) in cigarettes that are all king size, nonfiltered, nonmenthol, and non-light. Express the confidence interval in the format of mean + or - E.

ZInterval

(23.305,25.075)

mean=23.69

n = 30

The confidence interval is __?__ +or-___?___.

Respuesta :

Answer:

The confidence interval is [tex]22.805<\mu<24.575[/tex]

Step-by-step explanation:

We have given,

The Z interval (23.305,25.075)  

Mean [tex]\bar{x}=23.69[/tex]

Sample n=30

To find : The confidence interval?

Solution :

We know, The confidence interval is in the format of

[tex]\bar{x}-E<\mu<\bar{x}+E[/tex]

E denotes the margin of error,

[tex]E=\frac{U-L}{2}[/tex]

Where, U is the upper limit U=25.075

L is the lower limit L=23.305

[tex]E=\frac{25.075-23.305}{2}[/tex]

[tex]E=\frac{1.77}{2}[/tex]

[tex]E=0.885[/tex]

Substitute the value of E and [tex]\bar{x}[/tex] in the formula,

[tex]23.69-0.885<\mu<23.69+0.885[/tex]

[tex]22.805<\mu<24.575[/tex]

Therefore, The confidence interval is [tex]22.805<\mu<24.575[/tex]

ACCESS MORE